Insight into the Gassing Problem of Li-ion Battery
نویسنده
چکیده
Gas generation (namely, the volume swelling of battery, or called the gassing) is a common phenomenon of the degradation of battery performance, which is generally a result of the electrolyte decomposition occurring during the entire lifespan of Li-ion batteries no matter whether the battery is in service or not. Abuse conditions such as overcharging and overheating make the gassing worse or even result in disastrous accidents. In overcharging, the gassing occurs mainly through the electrochemical oxidation of electrolyte solvents on the cathode with the Li ions from the electrolyte being reduced into metallic Li on the anode. In overheating, the gassing takes place through not only the redox decomposition but also the chemical decomposition of the electrolyte solvents on both the anode and cathode besides the vapor expansion of volatile electrolyte solvents. In this opinion article, only the gas generation occurring under the normal operation and storage conditions will be addressed. Assuming that the Li-ion battery is well formed in manufacture and properly operated in service, the gas generation can be attributed to the chemical decomposition and redox decomposition of the electrolyte solvents on the anode and cathode. The chemical decomposition of dialkyl carbonate solvents produces ether and CO2, as described by Eq. 1, which can take place on both the anode and cathode. Resulting CO2 can be reduced into CO in accompany with the consumption of Li ions that are eventually originated from the cathode either by the chemical reduction (Eq. 2) or by the electrochemical reduction (Eq. 3) on the anode. R1O C OR2 O
منابع مشابه
Theoretical Assessment of the First Cycle Transition, Structural Stability and Electrochemical Properties of Li2FeSiO4 as a Cathode Material for Li-ion Battery
Lithium iron orthosilicate (Li2FeSiO4) with Pmn21 space group is theoritically investigated as a chathode material of Li-ion batteries using density functional theory (DFT) calculations. PBE-GGA (+USIC), WC-GGA, L(S)DA (+USIC) and mBJ+LDA(GGA) methods under spin-polarization ferromagnetic (FM) and anti-ferromagnetic (AFM) procedure are used to investigate the material properties, includin...
متن کاملDesign and Analysis of New Level Shifter With Gate Driver for Li-Ion Battery Charger in 180nm CMOS Technology
In this work, the design and analysis of new Level Shifter with Gate Driver for Li-Ion battery charger is proposed for high speed and low area in 180nm CMOS technology. The new proposed level shifter is used to raise the voltage level and significantly reduces transfer delay 1.3ns (transfer delay of conventional level shifter) to 0.15ns with the same input signal. Also, the level shifter with g...
متن کاملRole of phase change materials in creating uniform surface temperature on a lithium battery cell applicable in electric vehicles
With respect to the limitations of fossil energy resources, different types of electric vehicles (EVs) are developed as suitable alternatives. Lithium-ion (Li-ion) battery cells play an extremely important role in EVs due to their unique features. But they need a thermal management system (TMS) to maintain their surface temperature uniformity and avoid them from thermal runaways. In the current...
متن کاملStudying lithium-ion battery packs cooling system using water-nanofluids composition
In this study, the Li-ion batteries temperature increase during the discharge process was measured empirically and evaluated using numerical simulation. Moreover, the battery packs cooling using the water, air and water-nano composition fluids such as water-alumina, water-copper oxide, and water-gold was studied through numerical simulation. Accordingly, the battery cooling was simulated by CFD...
متن کاملA high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material
In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...
متن کامل